
13-November-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I

Agenda:
● Quiz #3

● Per-fragment lighting
• Dot3 texture combiner for lighting
• Tangent space lighting
• Bump mapping

● Assignment #3 due

● Start assignment #4

13-November-2007 © Copyright Ian D. Romanick 2007

Phong Shading Recap
 Interpolate normals between vertices

● If polygons are large, we will probably need to re-
normalize the interpolated values.

 Interpolate H vector between vertices
● Again with the re-normalize step

Perform per-fragment.N⋅H n

13-November-2007 © Copyright Ian D. Romanick 2007

Phong Shading in Texture Combiners
The NH calculation is the easy part.

● Use GL_DOT3_RGB.

What are the hard parts?

13-November-2007 © Copyright Ian D. Romanick 2007

Phong Shading in Texture Combiners
The NH calculation is the easy part.

● Use GL_DOT3_RGB.

What are the hard parts?
● Where does N come from?

● Where does H come from?

● What about diffuse lighting?

● Specular exponent.

13-November-2007 © Copyright Ian D. Romanick 2007

Surface­Space
From the point of view of the surface (i.e., in

surface-space), what is the normal vector?

13-November-2007 © Copyright Ian D. Romanick 2007

Surface­Space
From the point of view of the surface (i.e., in

surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

13-November-2007 © Copyright Ian D. Romanick 2007

Surface­Space
From the point of view of the surface (i.e., in

surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

 If we know the world-space surface normal,
N

surf
, can we create a transformation that will

map N
surf

 to (0, 0, 1)?

13-November-2007 © Copyright Ian D. Romanick 2007

Surface­Space
From the point of view of the surface (i.e., in

surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

 If we know the world-space surface normal,
N

surf
, can we create a transformation that will

map N
surf

 to (0, 0, 1)?

● Not uniquely.

● If we knew another vector in the plane, we could
create this transformation.

13-November-2007 © Copyright Ian D. Romanick 2007

Tangents
Call this new vector the tangent vector, and

note it T
surf

.

● Knowing N
surf

 and T
surf

 is enough the create an

orthonormal basis.

● This basis can transform any vector into surface-
space.

● Tangent vectors can be created automatically
(tricky) or by hand (annoying).

13-November-2007 © Copyright Ian D. Romanick 2007

Where does H come from?
Calculate the surface-space transformation.

Calculate H per-vertex.
● We covered this calculation in week 3.

Transform the per-vertex H vector to surface
space.

Use the H vector as a texture coordinate.
● This will perform the interpolation.

Use a cubic texture to re-normalize H.

13-November-2007 © Copyright Ian D. Romanick 2007

Where does N come from?
Three ways to get N:

● If surface is flat: N is constant (0, 0, 1), store in a
combiner constant color.

● If surface is curved: store per-vertex normal in one
of the interpolated colors.

● Surface is bumpy: fetch N from a texture.
• Texture is stored so that R, G, and B map to the X, Y,

and Z of the normal in surface space.
• These textures tend to look blue because the Z

component is usually close to 1.0.

13-November-2007 © Copyright Ian D. Romanick 2007

Combiner Setup

13-November-2007 © Copyright Ian D. Romanick 2007

What about the exponent?
Without shaders, we're very limited.

● Can burn a texture unit and do (GL_PREVIOUS,
GL_PREVIOUS, GL_MODULATE) to square it.

● Can do multiple passes to generate higher
exponents.

13-November-2007 © Copyright Ian D. Romanick 2007

What about diffuse?
 If there are more texture units, use them to do

diffuse calculation.
● L vector needs same treatment for diffuse as H.

Otherwise, do diffuse as a separate pass.
● We'll cover multi-pass next week.

 If the hardware has crossbar-like functionality,
we can use one less texture stage for the
specular calculation.

13-November-2007 © Copyright Ian D. Romanick 2007

Next week...
Fog

Framebuffer operations
● Blending

● Alpha test

Multi-pass rendering

Term projects assigned!!!

13-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

