
13-November-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I

Agenda:
● Quiz #3

● Per-fragment lighting
• Dot3 texture combiner for lighting
• Tangent space lighting
• Bump mapping

● Assignment #3 due

● Start assignment #4

13-November-2007 © Copyright Ian D. Romanick 2007

Phong Shading Recap
 Interpolate normals between vertices

● If polygons are large, we will probably need to re-
normalize the interpolated values.

 Interpolate H vector between vertices
● Again with the re-normalize step

Perform per-fragment.N⋅H n

13-November-2007 © Copyright Ian D. Romanick 2007

Phong Shading in Texture Combiners
The NH calculation is the easy part.

● Use GL_DOT3_RGB.

What are the hard parts?

13-November-2007 © Copyright Ian D. Romanick 2007

Phong Shading in Texture Combiners
The NH calculation is the easy part.

● Use GL_DOT3_RGB.

What are the hard parts?
● Where does N come from?

● Where does H come from?

● What about diffuse lighting?

● Specular exponent.

13-November-2007 © Copyright Ian D. Romanick 2007

SurfaceSpace
From the point of view of the surface (i.e., in

surface-space), what is the normal vector?

13-November-2007 © Copyright Ian D. Romanick 2007

SurfaceSpace
From the point of view of the surface (i.e., in

surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

13-November-2007 © Copyright Ian D. Romanick 2007

SurfaceSpace
From the point of view of the surface (i.e., in

surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

 If we know the world-space surface normal,
N

surf
, can we create a transformation that will

map N
surf

 to (0, 0, 1)?

13-November-2007 © Copyright Ian D. Romanick 2007

SurfaceSpace
From the point of view of the surface (i.e., in

surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

 If we know the world-space surface normal,
N

surf
, can we create a transformation that will

map N
surf

 to (0, 0, 1)?

● Not uniquely.

● If we knew another vector in the plane, we could
create this transformation.

13-November-2007 © Copyright Ian D. Romanick 2007

Tangents
Call this new vector the tangent vector, and

note it T
surf

.

● Knowing N
surf

 and T
surf

 is enough the create an

orthonormal basis.

● This basis can transform any vector into surface-
space.

● Tangent vectors can be created automatically
(tricky) or by hand (annoying).

13-November-2007 © Copyright Ian D. Romanick 2007

Where does H come from?
Calculate the surface-space transformation.

Calculate H per-vertex.
● We covered this calculation in week 3.

Transform the per-vertex H vector to surface
space.

Use the H vector as a texture coordinate.
● This will perform the interpolation.

Use a cubic texture to re-normalize H.

13-November-2007 © Copyright Ian D. Romanick 2007

Where does N come from?
Three ways to get N:

● If surface is flat: N is constant (0, 0, 1), store in a
combiner constant color.

● If surface is curved: store per-vertex normal in one
of the interpolated colors.

● Surface is bumpy: fetch N from a texture.
• Texture is stored so that R, G, and B map to the X, Y,

and Z of the normal in surface space.
• These textures tend to look blue because the Z

component is usually close to 1.0.

13-November-2007 © Copyright Ian D. Romanick 2007

Combiner Setup

13-November-2007 © Copyright Ian D. Romanick 2007

What about the exponent?
Without shaders, we're very limited.

● Can burn a texture unit and do (GL_PREVIOUS,
GL_PREVIOUS, GL_MODULATE) to square it.

● Can do multiple passes to generate higher
exponents.

13-November-2007 © Copyright Ian D. Romanick 2007

What about diffuse?
 If there are more texture units, use them to do

diffuse calculation.
● L vector needs same treatment for diffuse as H.

Otherwise, do diffuse as a separate pass.
● We'll cover multi-pass next week.

 If the hardware has crossbar-like functionality,
we can use one less texture stage for the
specular calculation.

13-November-2007 © Copyright Ian D. Romanick 2007

Next week...
Fog

Framebuffer operations
● Blending

● Alpha test

Multi-pass rendering

Term projects assigned!!!

13-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

